Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №10»

Иркутской области г.Зима

Исследовательская работа по химии

в 9 классе «Желтое, красное, зеленое, какое полезнее»

подготовила

учитель химии

Шептунова Елена Викторовна

г. Зима
2014

Введение

    Теоретическая часть

    Немного истории

    Яблоки и здоровье

    Практическая часть

      Определение яблочной кислоты

      Определение железа

      Определение глюкозы

      Определение крахмала

      Определение витамина С

      Определение витамина Е

Заключение

Приложение

Введение

В нашем городе круглый год можно приобрести на рынке и в магазинах различные фрукты. Но наиболее доступными по цене и многообразию являются яблоки. Яблоки - это не просто пищевой продукт, наполненный клетчаткой, это ценный витаминно-минеральный комплекс, который к тому же имеет много пищевых волокон, а из-за большого содержания воды и низкой калорийности яблоки кажутся лучшим продуктом для диетического питания. Всем известно, что в яблоках содержится много питательных веществ, которые необходимы нашему организму. Так например: витамины В 1 , В 2 , В 3 , В 6 , Е, РР и Р, помогают организму поддерживать нормальную эластичность стенок кровеносных сосудов, микроэлементы: калий, кальций, йод (в семечках яблочных), кремний, железо, магний. В кислых яблоках содержаться органические кислоты. Органические кислоты способствуют пищеварению, возбуждая деятельность желез и усиливая перистальтику кишечника. Натуральная глюкоза, содержащаяся в яблоках, снимает усталость. Железо, содержащееся в яблоках, поднимает уровень гемоглобина в крови.

Нами было проведено анкетирование учащихся и учителей школы. В анкетировании приняло участие 18 человек, анкетирование показало:

    Все 18 человек любят яблоки.

    16 человек считают, что яблоки полезны для нашего организма, 2 человека – не знают.

    Чаще всего употребляют зеленые яблоки – 10 человек, реже красные – 5 человек и еще реже желтые – 3 человека.

    12 человек считают, что цвет яблок влияет на содержание в них полезных веществ, 5 человек считают, что не влияет, а 1 человек – не задумывался.

А действительно влияет ли окраска и сорт яблок на содержание в них веществ необходимых нашему организму? Все ли они равной степени полезны для организма человека? На эти вопросы я постаралась ответить в своей работе.

Целью моей работы является исследование химического состава яблок.

Задачи:

    Изучить литературу.

    Провести опрос учителей и учащихся школы с целью выявления, какие по цветовой гамме яблоки они употребляют чаще и знают ли, что входит в состав яблок.

    Определить химический состав яблок (желтого, красного, зеленого).

    Выяснить влияние разных по окраске и по сорту яблок на организм человека.

Гипотеза: предположим, что цвет яблок не влияет на содержания в них питательных веществ, необходимых нашему организму.

Объект исследование : яблоки.

Предмет исследования: химический состав яблок.

Методы исследования:

    Соц. Опрос.

    Исследовательский метод.

    Практический метод.

I .Теоретическая часть

1.Немного истории

Яблоня возделывается практически во всех странах земного шара, а по площади посадок и сбору плодов занимает среди фруктовых растений почетное первое место.

Поистине промышленной культурой яблоня стала с начала XIX столетия. А. Т. Болотов, являющийся основателем агрономической науки в России, описал 561 сорт яблонь, которые выращивались только на территории Тульской губернии. На сегодняшний день в общей сложности в мире насчитывается более 10и тыс. сортов яблонь.

До Петра I большая часть яблок лучших сортов, которые попадали на стол зажиточных россиян, была привозной. Постепенно, благодаря стараниям самого Петра, импорт яблок уменьшился, так как отличные плоды начали давать отечественные сорта. Даже во времена Елизаветы Петровны, по странной прихоти природы ненавидевшей яблоки и запрещавшей есть их и придворным, культивирование яблок продолжалось.

Яблоки – древнейшие из плодов, которыми когда-либо лакомился человек. Безусловно, первым яблокам было далеко до нынешних выведенных сортов. Первые яблоки были маленькими, кисловатыми на вкус. Впервые культурные сорта яблони появились в Малой Азии (однако некоторые источники называют Кавказ или Среднюю Азию), откуда они впоследствии были перевезены в Палестину и Египет, а по прошествии определенного количества времени – в Древнюю Грецию, Рим, а далее в другие страны Европы и на другие континенты.

Первые сведения о выращивании культурных сортов яблони относятся ко времени правления князя Ярослава Мудрого в Киевской Руси. В 1051 году на территории Киево-Печерской лавры был заложен первый яблоневый сад. В XII столетии яблоневые плантации появились на территории нынешнего Подмосковья.

На нашей планете яблоневые сады покрывают около 5 миллионов гектаров. Почти половина плодовых деревьев – это яблони, а ближе к северу, где не вызревают даже абрикосы, не говоря уже о более теплолюбивых цитрусовых, их девять из десяти. Подобная популярность яблонь объясняется в первую очередь тем, что плоды этого дерева, возможно, употреблять круглый год. К тому же яблоки имеют высокие вкусовые качества, хорошо транспортабельны и весьма широко используются для самых различных видов переработки.

2.Яблоки и здоровье

Нам всем хорошо известно, что яблоки полезны для нашего здоровья, но не так давно исследователи открыли все их полезные свойства.

Одно яблоко среднего размера с кожурой содержит 3,5 г волокон, т. е. более 10 % суточной нормы волокон, необходимых организму каждого человека. В яблоке без кожуры содержится 2,7 г волокон. Нерастворимые молекулы волокон прикрепляются к холестерину и способствуют выводу его из организма, тем самым уменьшая риск закупорки сосудов, возникновения сердечных приступов.

С железом в яблоках благотворно сочетаются аскорбиновая и фолиевая кислоты, рутин. Если яблоко на разрезе быстро темнеет и терпкое на вкус, то оно полезно людям, страдающим повышенной ломкостью кровеносных сосудов.

Химический состав яблок весьма разнообразен и богат. В 100 г съедобной части свежих яблок содержится 11 % углеводов, 0,4 % белков, до 86 % воды, 0,6 % клетчатки и 0,7 % органических кислот, среди которых яблочная и лимонная.

К числу содержащихся в яблоках биологически активных веществ относятся, кроме аскорбиновой кислоты, тиамин, рибофлавин, пиридоксин, никотиновая кислота. Из микроэлементов яблоки богаты калием, кальцием, фосфором, натрием, молибденом, цинком, барием.

Исследователями установлено, что употребление двух яблок в день снижает уровень холестерина на 16 %, а употребление стольких же яблок, наряду с маленькой или средней головкой лука и 4 чашками зеленого чая, снижает риск возникновения сердечного приступа на 32 %.

Также яблоко способствует нормализации пищеварения. Волокна, как было упомянуто выше, предотвращают запоры. Пектин лечит диарею. Традиционно яблоки считаются хорошим естественным средством против расстройства желудка. На это есть свои причины: не забывайте, в яблоке содержатся яблочная и винная кислоты, способствующие пищеварению. В яблоках содержится огромное количество калия – минерала, который помогает регулировать уровень жидкости в организме. Достаточный прием калия может помочь снизить давление крови у людей с гипертонией. Кроме того, в яблоках содержится бор – минерал, который помогает избежать остеопороза.

II . Практическая часть

Объекты исследования

Для проведения исследования были взяты яблоки трех сортов: желтое-«Американка», красное-«Красная прима», зеленое-«Грени». Обозначим их под номерами 1- желтое, 2 – красное, 3- зеленое.

1.1 . Определение яблочной кислоты в исследуемых образцах.

Как известно яблочная кислота содержится в недозрелых яблоках. Мы решили, выяснить содержится ли яблочная кислота в наших исследуемых образцах. Для этого мы натерли яблоко, выжили сок. Сок исследуемых образцов яблок, мы капнули на универсальную лакмусовую бумагу.

Вывод: Лакмусовая бумажка окрасилась в красный цвет. Окраска лакмусовой бумажки, на которую капнули, соком желтого яблока приобрела, не яркий красный цвет, а вот лакмусовая бумажка, на которую капнули, соком яблок красного и зеленого стала ярко – красной. Значит, яблочная кислота содержится во всех исследуемых образцах, меньше ее в яблоке желтого цвета сорта «Американка».

Яблочная кислота считается важным продуктом в промежуточном звене обмена веществ человека, способствует улучшению тонуса, помогает людям страдающим гипертонией, положительно оказывает действие: на усвояемость лекарственных препаратов, печень и почки, защищает эритроциты от воздействия некоторые лекарств, особенно — противораковых. Допустимое количество употребления в сутки — не установлено.

1.2.Определение железа в исследуемых образцах

Всем известно, что в яблоках содержится железо, мы решили выяснить, а содержится ли железо в наших исследуемых образцах?

Мы взяли исследуемые образцы яблок, разрезали. Одну половину мы смазали лимоном, а другую оставили чистой. Через некоторое время наблюдали, что «чистая» половина исследуемых образцов яблок потемнела, (все исследуемы образцы яблок потемнели практически сразу, более интенсивное потемнее было на яблоке желтом, менее темное потемнее было на яблоке красном и еще менее на желтом), а что была смазана соком лимона, осталась белой.

К соку исследуемых образцов добавили гидроксид натрия наблюдали, выпадения бурого осадка. Там где был сок желтого яблока, мы наблюдали выпадения осадка, в пробирке с соком от красного яблока мы наблюдали выпадения осадка, но осадок был слабый, в пробирке с соком от зеленого яблока был осадок, но еще более слабый, чем в пробирке, где был сок от красного яблока.

Вывод: Мы доказали, что железо содержится во всех исследуемых образцах.

Большее его оказалось в желтом яблоке, красном меньше, а вот в зеленом еще меньше. В яблоках содержится железа, а в соединениях железо бывает двухвалентным и трёхвалентным. Когда яблоко не повреждено, всё железо в нём двухвалентное, а его соединения имеют светло-зелёную окраску. Когда же ты яблоко надкусил, кислород из воздуха постепенно проникает в яблоко и окисляет железо. Оно становится трёхвалентным, а соединения трёхвалентного железа имеют коричнево-бурую окраску. Потемнение происходит из-за окисления железа, содержащегося в яблоке, кислородом воздуха. А аскорбиновая кислота, содержащаяся в лимоне, — природный антиоксидант, замедляющий процессы окисления. Железо является незаменимым металлом, необходимым для жизнедеятельности организма. Оно входит в состав гемоглобина, миоглобина, а также различных ферментов; обратимо связывает кислород и участвует в ряде окислительно-восстановительных реакций; играет важнейшую роль в процессах кроветворения. Конечно, чтобы нужное количество железа поступило в организм человека, нужно съесть очень много яблок.

1.3. Определение глюкозы

Многие фрукты и ягоды содержат глюкозу, вот и мы решили выяснить содержится ли в наших образцах глюкоза. Определить наличие глюкозы можно с помощью реактива гидроксида меди (II ). Для этого мы берем сок исследуемых образцов добавили гидроксид натрия, а затем раствор сульфата меди. Раствор окрашивается в синий цвет. Получившийся раствор нагрели на спиртовке. Постепенно раствор меняет окраску: синий – зеленый – желтый — красный.

Появление красной окраски свидетельствует о том, что в яблочном соке содержится глюкоза. Глюкоза - один из видов сахара. При кипячении раствора образуется желтый осадок Cu 2 O, который постепенно превращается в красный осадок CuO.

Вывод : Глюкоза содержится во всех исследуемых образцах.

Глюкоза — участник многих процессов обмена веществ в организме. Если принимать глюкозу, то организм может в полной мере восстанавливать свою работоспособность. Так же приём глюкозы помогает печени вырабатывать антитоксины. Положительное действие глюкозы заключается ещё и в том, что калорий глюкоза содержит вдвое меньше , чем их содержат жиры, а вот окисляется она гораздо быстрее и легче, чем все вещества, которые способны поставить организму энергию. Глюкоза положительно действует на работу сердца, по-этому её применяют при декомпенсации сердца. Применяют глюкозу как самостоятельный препарат и в сочетании с сердечными глюкозидами. Глюкоза входит в состав многих противошоковых жидкостей и кровезаменителей, которые применяют при заболеваниях печени, различных инфекциях и заболеваниях центральной нервной системы.

1.4.Определение крахмала в яблоках

На кусочек яблока мы капнули одну каплю йода, синего окрашивания не произошло.

Вывод: Значит, в наших исследуемых образцах не содержится крахмал.

Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Крахмал превращается в глюкозу последовательно, через ряд промежуточных образований. По мере этих превращений повышается степень растворимости в воде.

1.5.Определение витамина С в яблоках.

В пробирку с водой налить 2мл. яблочного сока, 10мл. дистиллированной воды и немного крахмального клейстера. Далее по каплям добавлять спиртовой раствор йода до появления устойчивого синего окрашивания, не исчезающего 10-15сек. Техника определения основана на том, что молекулы аскорбиновой кислоты легко окисляются йодом. Как только йод окислит всю аскорбиновую кислоту, следующая же капля прореагирует с крахмалом, окрасит раствор в синий цвет.

Вывод: Мы наблюдали синее окрашивание во всех исследуемых образцах. Значит витамин С присутствует во всех трех образцах.

Витамин С выполняет роль регулятора окислительно-восстановительных процессов и обмена веществ, повышает сопротивляемость организма к инфекциям и нормализует проницаемость сосудов, оказывает антитоксическое действие при отравлении многими ядами и бактерицидными токсинами, ускоряет заживление ран. Важная роль принадлежит витамину С и в образовании коллагена – основного белка соединительной ткани, который участвует в построении стенок сосудов, костной ткани, суставных поверхностей и является структурной основой всех органов нашего организма.

Витамин С нормализует уровень холестерина в крови и участвует в синтезе адреналина – гормона коры надпочечников. Способствует полноценному усвоению организмом железа из продуктов растительного происхождения, тем самым улучшая синтез гемоглобина и клеток крови – эритроцитов. По некоторым данным, витамин С обладает противоаллергическим действием, обладая антигистаминной активностью. Считается, что витамин С предупреждает развитие онкологических заболеваний. Употребление его в больших дозах препятствует превращению нитритов и нитратов пищи в нитрозамины – соединения, вызывающие рак желудка и кишечника.

1.6.Определение витамина Е.

В сухую пробирку накапать 10 капель яблочного сока, прибавить 10 капель концентрированной азотной кислоты. Содержимое пробирки встряхнуть. Образовавшаяся эмульсия постепенно расслаивается, верхний маслянистый слой приобретает красную окраску.

Вывод: Мы наблюдали во всех исследуемых образцах яблок расслаивание, и верхний слой приобрел красный цвет. Значит в наших исследуемых образцах яблок, содержится витамин Е. Витамин Е участвует в синтезе гормонов, отвечающих за работу половых желез. Другая важная роль витамина Е – защита жиров от окисления. Его молекула перехватывает свободные радикалы и превращает их в безвредное вещество, которое может быть выведено с мочой. Для женщин важно свойство витамина Е сохранять молодость кожи. Он ускоряет обновление клеток и защищает от повреждения солнечными лучами, снимает воспаление и способствует заживлению ран. Поэтому токоферол входит в состав многих косметических средств для ухода за лицом и руками.

Заключение

Яблоки - это не просто пищевой продукт, наполненный клетчаткой, это ценный витаминно-минеральный комплекс, который к тому же имеет много пищевых волокон, а из-за большого содержания воды и низкой калорийности яблоки кажутся лучшим продуктом для диетического питания. В яблоках содержатся витамины и микроэлементы: калий, кальций, йод (в семечках яблочных), кремний, железо, магний. А по содержанию витамина А (витамина роста) яблоки опережают апельсин! Вкусовые качества яблок зависят от соотношения содержащихся в них сахаров и органических кислот: яблочной (72%), лимонной (17%) и янтарной (6,8%). На долю остальных кислот приходится около 4%. Какое же яблочко съесть: желтое, красное или зелёное? Какое яблоко полезнее? В каком содержится больше витаминов в желтом, красном или в зелёном яблоке? Красное яблоко слаще, чем желтое, а уж тем более слаще зеленого. В желтом яблоке содержится больше железа, чем в красном и зеленом. Во всех исследуемых образцах присутствуют витамины С и Е. Зелёные яблоки не вызывают аллергию. В то время как красный цвет яблок может вызвать пищевую аллергию у людей особо чувствительных к различным аллергенам. Яблоки зелёного цвета помогают желудку переваривать достаточно жирную пищу. Поэтому утку или гуся для запекания фаршируют, именно яблоками зелёного цвета. Яблоки зелёного цвета полезно есть людям, болеющим диабетом, а так же людям, у которых пониженная кислотность желудка. Кислота яблок зелёного цвета препятствует образованию кариеса. Мы доказали, что в сочных спелых яблоках нет крахмала.

Однозначно сказать, какое яблоко полезнее желтое, красное или зеленое нельзя, все эти виды яблок содержат необходимые нашему организму полезные вещества, поэтому гипотеза, которая была, поставлена в начале нашего исследования была доказана. В дальнейшем я планирую продолжить работу над этой темой, сравнить яблоки свежего урожая с яблоками урожая прошлого года.

Список использованной литературы

    Габриелян О. С., Ватлина Л. П. Химический эксперимент в школе. М.: Дрофа, 2005.

    Мартынов С.М. овощи + фрукты + ягоды = здоровье. – М.: Просвещение, 1993.

    Сайты в Интернете.

Приложение 1

Анкетирование

    Любите ли Вы яблоки.

    Как Вы считаете, яблоки полезны для организма?

    Какие яблоки, Вы чаще всего употребляете (желтые, красные, зеленые)?

    Влияет ли цвет яблок на содержание в них веществ, необходимых нашему организму?

Работы: Все Избранные В помощь учителю Конкурс «Учебный проект» Учебный год: Все 2015 / 2016 2014 / 2015 2013 / 2014 2012 / 2013 2011 / 2012 2010 / 2011 2009 / 2010 2008 / 2009 2007 / 2008 2006 / 2007 2005 / 2006 Сортировка: По алфавиту По новизне

  • How did Nobel Prize Winners from Great Britain and Russia contribute to the progress of Humanity

    История создания Нобелевской премии и ее создатель. Британские Нобелевские лауреаты. Русские Нобелевские лауреаты. Влияние Нобелевской премии на прогресс человечества.

  • "Quindecim miracula" Амурской области

    Цель проекта: раскрыть понятие «quindecim miracula» Амурской области; охарактеризовать имеющиеся минеральные источники Приамурья, изучить их химический состав и влияние на организм человека.

  • А наша водица - здоровья частица, или…

    Описано исследование по комплексной гигиенической оценке качества питьевой воды из различных источников на территории МО Рождественское сельское поселение. Исследовались 12 проб колодезной и водопроводной воды визуально-колориметрическим, органолептическим методами (методика А.Г. Муравьёва), методом титрования. Предложены рекомендации по улучшению качества воды.

  • Автомагистраль, снег, почва, растения

    В работе выясняется влияние автомагистрали на содержание ионов свинца и хлора в снеге, почве и растениях. Доказывается отрицательное воздействие высоких концентраций этих ионов на живые организмы.

  • В последнее время автомобиль становится конкурентом человека в борьбе за жизненное пространство. Объект исследования: проблема загрязнения окружающей среды автотранспортом и ее профилактика в условиях современного общества. В ходе проведения работы исследовался уровень загрязнения атмосферы Кузнецкого района г. Новокузнецка выбросами выхлопных газов автомобилей. Также были разработаны мероприятия по защите окружающей среды от влияния автотранспортных средств.

  • Автомобильное топливо и его применение

    Данная работа показывает межпредметную связь химии с профессиональным циклом предметов по профессии "Автомеханик". В работе описаны основные виды автомобильного топлива, области его применения, процессы, происходящие при сгорании топлива.

  • Агент 000, или Щит и меч

    Всем известна роль озона для планеты Земля: озоновый щит защищает все живое от агрессивного ультрафиолетового излучения. Но озон одновременно является и мечом. Знаменитый Джеймс Бонд был агентом 007, нули перед семёркой означали, что агент имел право на убийство. Кодовое обозначение озона еще грознее – три нуля, 000. Озон – агент с правом на массовое убийство бактерий и всевозможных вредных примесей. Цель работы – изучение свойств озона и поиск реактивов для его обнаружения. Описано открытие озона; роль озонового слоя Земли; рабочие профессии озона. В экспериментальной части работы озон получали физическим способом – с помощью непрерывного искрового разряда; химическим методом – действуя концентрированной серной кислотой на пероксосульфат калия. Изучали отбеливающие действия озона на красители. Подобрали более чувствительный реактив для обнаружения озона – смесь растворов сульфата двухвалентного железа и роданида калия.

  • Агрономия. Эффект минеральных удобрений

    В работе приведена информация по истории агрономии. Дана характеристика макро- и микроудобрений, их биологическая роль для роста и развития растений. Особое внимание уделено нитратам в части последствий их использования человеком.

  • Агрохимическое исследование почвы пришкольного участка школы "Жасыл Алан"

    В работе рассмотрены вопросы плодородия почвы, проведен количественный анализ на содержание ионов сульфата, карбоната и хлорида с пробы пришкольного участка земли. Также сделан бактериологический анализ совместно с районной ветеринарной лабораторией и определено количество нитратов и рН почвы вместе с районной санэпидемстанцией.

  • Агрохимия для восьмиклассников

    Мною были поставлены задачи: определить физическое и химическое состояние почвы с дачного участка, провести сравнительный анализ произрастания комнатных растений и овощных культур на исследуемой почве с минеральными удобрениями и без них, в качестве минерального удобрения использовать промышленные азотсодержащие сточные воды от производства NPK (г. Россошь). Опираясь на результаты моего исследования, можно утверждать, что удобрения являются стимулятором роста растений, но только в дозах, ему необходимых.

  • Адсорбция уксусной кислоты активированным углем

    Целью нашей работы было изучить адсорбцию уксусной кислоты и выбрать модель процесса (модели адсорбции Ленгмюра и Фрейндлиха). Определяя экспериментальным путем разность между концентрацией раствора до и после адсорбции для растворов различной концентрации и зная массу адсорбента, мы получили данные об удельной адсорбции в зависимости от равновесной концентрации раствора.

  • Азот в пище, воде и организме человека

    В работе дана информация о роли азота для организма человека, воды, воздуха. Описаны методы определения (обнаружения) связанного азота в различных веществах: пище, воде, воздухе. Проведен анализ пищевых продуктов (мука, крахмал, сыр, хлеб, вода и др.) и воздуха на присутствие в них азота. Показано значение белковой пищи для человека. Оценивается опасность модных белковых диет.

  • Азот и его соединения

    В работе рассмотрены строение, свойства и применение азота и его соединений; показано значение азота, его влияние на живые организмы; круговорот азота в природе; приведены диаграммы получения азотных удобрений и их использование в севообороте.

  • Азот как биогенный элемент

    Работа посвящена изучению биологической роли азота. В ней рассматривается значение важнейших соединений этого элемента, а также его взаимосвязь с бобовыми растениями. Материал содержит интересные сведения о замораживании живых структур в жидком азоте.

  • Оглянемся вокруг. Природа рядом с нами наполнена множеством прекрасных сочных красок. Вот я и решила позаимствовать у нее частичку этого разноцветья. В работе описаны виды красок и история их изобретения; способ изготовления акварельных красок. Описан способ извлечения красящих веществ из различных растений, приготовление из них красок, пригодных для рисования.

  • Акварельные краски. Их состав и изготовление

    Работа посвящена исследованиям физико-химических свойств акварельных красок. Рассмотрены свойства и особенности красок. Дана характеристика основным составным частям акварели. Затронут вопрос промышленного производства акварельных красок. Дано описание способа извлечения красителей из растений. Приведена методика получения основы для акварельных красок на основе доступного сырья.

  • Аквариум как химико-биологический объект исследования

    Многие начинающие аквариумисты мечтают завести в своих аквариумах таких рыб, как, например, лабео, не зная, что не всегда вода в них соответствует естественным условиям обитания этих рыб. В данном проекте излагаются простые и доступные методы исследования физических и химических параметров аквариумной воды.

  • Активированный угль. Явление адсорбции

    «Адсорбция» (от латинского «ad» – на, при, и «sorbeo» – поглощаю) – поглощение какого либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Адсорбция играет важную роль во многих природных процессах. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем. В работе исследована адсорбционная способность активированного угля. Показано применение этого свойства на практике.

  • Актиноиды: взгляд из прошлого в будущее

    В работе представлены данные о семействе элементов-актиноидов (№ 89-103 ПСХЭ): общая характеристика элемента, история открытия, получение. В отдельной главе приводятся сведения о ядерном топливе, его классификации, устройстве ядерных реакторов.

  • Актуальность педагогических взглядов Д.И. Менделеева в свете модернизации современного российского образования

    В работе проанализированы работы Д.И. Менделеева по проблемам образования. Цель работы – сравнение задач модернизации российского образования, требований Федерального компонента Государственного стандарта общего образования и взглядов Д.И. Менделеева на развитие образования в России и обоснование актуальности этих взглядов на сегодняшний день.

Как лечится острый гастрит? Необходимо промыть желудок. Больному дают выпить несколько стаканов воды или физраствора, а затем вызывают рвоту, раздражая корень языка. Процедуру повторяют «до чистых вод» - пока в рвотных массах не исчезнут частички пищи. В течение суток лучше поголодать, можно только пить теплый чай, отвар шиповника, мяты, ромашки или подорожника, овса, тысячелистника, минеральную воду без газа. Затем назначается щадащая диета – слизистые супы, омлет, протертые каши, суфле из нежирного мяса и рыбы, кисель. Затем добавляется несдобный хлеб, молочные продукты, отварные овощи, а через неделю переходят на нормальное питание. При тошноте и рвоте помогает церукал или мотилиум При боли эффективны платифиллин и папаверин. Антибактериальная терапия необходима только при тяжелых токсикоинфекциях, которые лечатся в стационаре, поэтому самостоятельно назначать себе левомицетин или энтеросептол в лучшем случае бессмысленно, в худшем – вредно. Если же выяснится, что возбудитель острого гастрита – хеликобактер, потребуется эрадикация, как при хроническом гастрите. Гастрит, развившийся вследствие приема крепких кислот или щелочей – только верхушка айсберга. Зачастую ему сопутствуют отек гортани или острая почечная недостаточность, которые могут потребовать неотложной помощи. Поэтому лечить дома такой гастрит нельзя.

Исследовательская работа учащихся по химии

из опыта работы учителя химии Габдрахмановой Т.В.

«МБОУ СОШ №5» г.Усинск Республика Коми

Сомневаясь, мы начинаем исследовать,

а исследуя, находим истину.
Пьер Абеляр

Введение

Одной из основных функций учителя является обучения и развитие личности ученика. Особую значимость приобретает организация исследовательской деятельности, которая оказывает существенное влияние на личностное и профессиональное развитие учащихся.

На протяжении многих лет я занимаюсь организацией исследовательской работы среди учащихся 8-11 классов по химии в нашей школе.

Целью исследовательской работы является воспитание любознательного, активно познающего мир, владеющего основами умения учиться ученика, умеющего слушать и слышать других .

Задачи :

развивать умение проектировать свою деятельность (учебную, исследовательскую);

развивать коммуникативные и творческие способности учащихся;

совершенствовать навыки работы с методами, необходимыми для проведения исследований − наблюдением, измерением, экспериментом;

оформлять результаты работы, представлять свою работу на различных конкурсах;

использовать опыт учащихся для получения новых знаний;

развитие способности к самостоятельной работе с различной информацией.

Актуальность исследовательской работы:

поиск наибольшей эффективности между тенденциями инновационного образовательного процесса и традиционными технологиями обучения учащихся;

потребность формирования уникальной творческой личности, способной нестандартно мыслить.

обучение учащихся способам поиска, систематизации и обработки полученной информации путем самостоятельной исследовательской деятельности.

Организация исследовательской работы на уроках химии

При организации исследовательской работы необходима теоретическая подготовка, которую учащиеся получают на традиционных занятиях по первичному закреплению знаний.

Элементы исследовательской работы учащиеся получают на уроках химии, но при этом возникают различные проблемы, так как школьники очень расплывчато представляют методы исследования, этапы работы, оформление результатов своей исследовательской работы. Им трудно подобрать источники информации для темы, генерировать идеи, найти пути решения проблем, анализировать, сравнивать, делать обобщения и выводы, соотнести достигнутое с ранее поставленными целями и задачами. Когда учащиеся подготовлены теоретически, следует применять у роки с элементами исследования и уроки-исследования. Для стимулирования интереса к исследовательской деятельности на уроках химии необходимо создать ситуацию успеха.

Уроки с элементами исследования .

Учащиеся отрабатывают на уроке отдельные учебные приемы, которые составляют исследовательскую деятельность . Что бы учащимся предлагать провести исследование требуется сформировать у них понятие о предмете и объекте исследования, гипотезе, показать способы проверки гипотез. Алгоритм исследования учащимся можно предложить на примере простой проблемной задачи с химическим содержанием. Например «Какими свойствами должен обладать оксид и гидроксид элемента с порядковым номером 13?» (Приложение 1). После выполнения работы учащимся можно предложить самостоятельные исследования по проблеме: «Какими свойствами обладает гидроксид химического элемента, если электронное строение атома выражается схемой: 2е; 8е; 5е?». По содержанию элементов исследовательской деятельности выделяют разнообразные типы уроков: уроки по выбору темы и метода исследования, работа с источниками информации, уроки с проведением эксперимента, заслушивание сообщений, защита рефератов и т.д.

В развитии исследовательских умений учащихся очень важна роль проблемного обучения. Проблемная ситуация побуждает учеников к мыслительной деятельности (анализ, синтез, обобщение, конкретизация и т.д.) При рассмотрении темы «Коррозия металлов» можно создать проблемную ситуацию. Ребенок выступает с сообщением, в котором рассказывает о вреде коррозии. Докладчик преследует цель дать общее представление о коррозии и о вреде, наносимом этим явлением. Строки из доклада: «Коррозия наносит не только прямой ущерб (ежегодно от нее теряется около одной трети произведенного за год во всем мире металла), но и косвенный: ведь разрушаются металлические конструкции (машины, крыши, памятники, мосты)». Определяем проблему, которую следует разрешить на уроке: как защитить металлы от коррозии? Учащиеся предлагают и обосновывают методы защиты металлов от коррозии.

Химический эксперимент является одним из способов формирования и развития исследовательских умений учащихся. Эксперимент на уроке используют для создания проблемной ситуации, а так же как средство подтверждения или опровержения выдвинутых учащимися гипотез. При изучении темы «Гидролиз солей» в начале урока можно провести лабораторный опыт и с помощью универсальной индикаторной бумаги определить среду растворов солей. Наблюдения можно записать в таблицу.

После проведения опыта совместно с учащимися выдвигаем проблему. Соли рассматриваем как результат реакции нейтрализации. Почему растворы солей имеют разную среду? Опираясь на известные знания о диссоциации, учащиеся выдвигают различные гипотезы. Учащиеся вспоминают различные признаки классификации кислот и оснований, анализируют формулы предложенных солей. В ходе беседы учащиеся приходят к выводу, что происходит гидролиз, который является одним из химических свойств солей.

Урок-исследование

На уроке-исследовании учащиеся осваивают методику научного исследования, устанавливают этапы научного познания. Исследовательские знания и умения учащиеся осваивают поэтапно, постепенно увеличивая степень самостоятельности учеников в их исследовательской учебной деятельности .

На уроках-исследованиях используются разнообразные формы обучения учащихся: индивидуальная, групповая, парная, коллективная. Предпочтение отдается работе в группах по 2-4 человека, так как работа в группе способствуют формированию коммуникативных ОУУН. Чтобы избежать недостатков групповой работы (конфликты, «спрятаться за чужими спинами» и т.д.) разрабатываются и используются правила групповой работы .

Урок-практикум

На уроках-практикумах учащиеся также работают в группах. Каждая группа, состоящая из 2-3 человек получает экспериментальное задание, которое в течении урока необходимо выполнить. При проведении практикума для учащихся создается инструкция, которая по определенным правилам последовательно устанавливает действия ученика.

Исходя из имеющегося опыта можно предложить следующую структуру уроков-практикумов:

Сообщение темы, цели и задач практикума;

Актуализация опорных знаний и умений учащихся;

Мотивация учебной деятельности учащихся;

Ознакомление учащихся с инструкцией;

Подбор необходимых дидактических материалов, средств обучения и оборудования;

Выполнение работы учащихся под руководством учителя;

Составление отчета;

Обсуждение и теоретическая интерпретация полученных результатов работы.

Эту структуру можно изменять в зависимости от содержания работы, подготовки учащихся и наличия оборудования. Уроки-практикумы проводятся в 11 классе, например по теме «Получение, собирание и изучение свойств газов», «Решение экспериментальных задач по неорганической и органической химии».

В преподавании учебных предметов основная задача заключается в том, чтобы, прежде всего, заинтересовать учащихся процессом познания: научить их задавать вопросы и пытаться найти на них ответы, уметь объяснять результаты, делать обоснованные выводы. Внедрение исследовательского подхода способствует усилению мотивации учебной деятельности в обучении химии.

Исследовательская работа в школе может быть разнообразной. Навыки исследовательской работы на уроках химии учащиеся получают на практических работах, в которых сочетаются разнообразные задания: экспериментальные задачи, расчетные задачи, которые требуют теоретической подготовки к работе, и отражают основные этапы исследовательской деятельности.

При решении экспериментальных задач учащиеся видят связь химии с жизнью, что способствует развитию интереса к изучению предмета, а также подготовить их к осознанному выполнению практических работ (Приложение 2). Исследовательская деятельность учащихся осуществляется как на уроках химии, так и во внеурочное время.

Исследовательская работа во внеурочное время+

- выявление талантливых и одарѐнных учащихся

Многие учащиеся способны заниматься исследовательской, а тем более научно-исследовательской деятельностью. Важно уметь определять талантливых и способных учеников. Необходимо учитывать, что общая успеваемость учащегося не является главным показателем его реальных способностей. Сложнее выявить у учащихся готовность к данному виду деятельности. Необходимо найти такого ученика, которому это интересно, и который доведет работу до конца.

На уроке такие дети заметны при выполнении практических и лабораторных работ, составлении проектов, выступлении с презентациями. При проверке таких заданий необходимо обращать внимание на творческий подход к выполнению заданий, на использование дополнительной литературы. Во время представления такой работы учащимся предлагается подискутировать на тему, что понравилось в данной работе и что можно еще порекомендовать. После выступления, предлагается ответить на несколько вопросов, направленных на выявление отношения к данному виду деятельности.

При анализе таких выступлений нужно обратить внимание на тех учащихся, у которых к данному виду работы проявляется стабильный интерес. В дальнейшем этим детям можно предложить поучаствовать в исследовательской работе.

- формирование интереса к научному творчеству

Не всегда учащиеся проявляют интерес к научно-исследовательской работе, поэтому необходимо сделать упор на исполнительность и ответственность школьника. Как заинтересовать ученика? Для этого можно использовать несколько приемов. Во-первых, убедить, что участие в научно-исследовательской работе пригодится в дальнейшей жизни, за пределами школы. Во-вторых, зная, что подростки стремятся, как-то выделиться, быть не похожими на большинство, то участие в научно-исследовательской работе позволит ощутить свое особенное положение среди одноклассников. В-третьих, создать атмосферу соревнования.

- работа с литературой

Любая деятельность, и школьный реферат и докторская диссертация, невозможны без работы с источниками литературы. Необходимо объяснить и показать ученику, что литературный источник − основа его работы. В ходе исследовательской работы учащимся приходится работать с различными источниками информации. Задача ученика − научиться работать с источником, приобрести навык самостоятельной работы, правильного оформления. Необходимо дать некоторые рекомендации при работе с литературными источниками. Объяснить учащимся, что не вся собранная информация может оказаться необходимой, не пытаться включить в работу весь собранный материал.

- практическая часть работы

При проведении практической части учащиеся выделяют задачи исследования, выдвигают гипотезы и проверяют их, проводя теоретические или экспериментальные исследования, обрабатывают полученные результаты. Роль учителя на данном этапе организации исследовательской деятельности не является доминирующей. Учитель сотрудничает с учащимся, консультирует, подсказывает, как правильно работать с оборудованием, поставить эксперимент .

Выполняя научное исследование, учащиеся приобретают навыки самостоятельного творчества, самостоятельного получения новых знаний, информации и их практического применения, которые будут полезны в любой области деятельности.

- выступление на научных конференциях

Научно-практические конференции учащихся ежегодно проходят в школе. Успех выступления на научно-практической конференции зависит от того, насколько учащиеся смогут хорошо и уверенно представить свою работу в секции, подготовить компьютерную презентацию, текст выступления. Необходимо четко изучить критерии оценивания работы. Защита работы будет результативной, когда ученик свободно владеет информацией, ориентируются во всех частях выполненной работы, знает термины, обладает навыками ораторского искусства, хорошо подготовлен к выступлению на конференции. Ученик, занимающийся исследованием, проявляет значительную самостоятельность на всех этапах работы. У таких детей растѐт их познавательная активность и как правило, повышается качество знаний по предмету. Приобретенный опыт и исследовательские навыки учащихся влияют на качество выполнения опытов на практических работах: они быстрее подбирают реактивы для проведения реакций, делают правильные наблюдения и выводы. Исследовательская работа может помочь учащимся, определиться с выбором профессии, где основным направлением является работа с химическими веществами.

Исследовательская работа требует много времени, и в основном происходит во внеурочное время. Учащиеся 9-10 -ых классов ежегодно участвуют в школьной научно-практической конференции, с некоторыми работами выступают на муниципальной научно-практической конференции. В 2016 г ученица 9б класса Берестецкая Екатерина выступила на городской конференции с темой «Пищевые добавки и влияние их на организм человека», презентация размещена на сайте https://sites.google.com/site/gabdrakhmanova5/home/vneklassnaa-rabota/gorodskaa-konferencia

В 2017 г учащиеся 9г класса Щеглов Артем с темой «Адсорбционные свойства угля» и Скворцов Денис с темой «Железо - элемент цивилизации и жизни» выступили на муниципальной научно-практической конференции и заняли третье место. В приложении 3 представлены фрагменты работы Щеглова Артема. Ссылка на презентации к работам https://sites.google.com/site/gabdrakhmanova5/home/issledovatelskaa-rabota/zelezo

реактив

пробирки

лакмус

NaOH

синий

NaCl

фиолетовый

HCl

красный

Задача 2

В трех пронумерованных пробирках под №1, №2, №3 находятся растворы хлорида бария, сульфата натрия и карбоната калия. Распознать вещества, составить уравнения реакций в молекулярном, полном и сокращенном ионном виде.

Работа в парах (заполнение таблицы, составление уравнений реакций)

реактивы

Формулы веществ

HCl

BaCl 2

H 2 SO 4

пробирки

BaCl 2

Белый осадок

Na 2 SO 4

Белый осадок

K 2 CO 3

Газ без цвета и запаха

Одно из веществ реагирует с добавленным реактивом, а два других нет. При этом мы наблюдаем, что в одной из пробирок реакция действительно прошла, то есть должен наблюдаться какой-либо ее внешний признак - выделение газа, изменение цвета, выпадение осадка и т.п.

Уравнения реакций

K 2 CO 3 +2 HCl → 2 KCl +H 2 O + CO 2

2 K + +CO 3 2- + 2 H + + 2 Cl - → 2 K + + 2 Cl - + H 2 O + CO 2

2 H + + CO 3 2- → H 2 O + CO 2

Na 2 SO 4 + BaCl 2 → BaSO 4 ↓ + 2 NaCl

2 Na + + SO 4 2- + Ba 2+ + 2 Cl - → BaSO 4 ↓ + 2 Na + + 2 Cl -

Ba 2+ + SO 4 2- → BaSO 4

H 2 SO 4 + BaCl 2 → BaSO 4 ↓ + 2 HCl

2 H + + SO 4 2- + Ba 2+ + 2 Cl - → BaSO 4 ↓ + 2 H + + 2 Cl -

Ba 2+ + SO 4 2- BaSO 4

Задача 3

В трех пронумерованных пробирках находятся растворы хлоридов натрия, магния, алюминия. Распознать вещества, составить уравнения реакций в молекулярном, полном и сокращенном виде.

Работа в парах (заполнение таблицы, составление уравнений реакций).

Формулы веществ

Реактивы

пробирки

NaOH

Уравнения реакций

MgCl 2 + 2 NaOH Mg ( OH ) 2 ↓+ 2 NaCl

Mg 2+ + 2 Cl - + 2 Na + + 2 OH - Mg ( OH ) 2 ↓ + 2 Na + + 2 Cl -

Mg 2+ + 2 OH - Mg ( OH ) 2

AlCl 3 + 3 NaOH Al ( OH ) 3 ↓ + 3 NaCl

Al 3+ +3 Cl - + 3 Na + + 3 OH - → Al(OH) 3 ↓ + 3 Na + +3 Cl -

Al 3+ +3 OH - → Al(OH) 3

Al(OH) 3 + NaOH → Na

Al(OH) 3 + Na + + OH - → Na + + -

Приложение 3

(Фрагменты работы)

Исследовательская работа по химии

«Адсорбционные свойства угля»

Выполнил ученик 9г класса Щеглов Артем

Введение

В природе широко распространено явление поглощения одним веществом других веществ, называемое сорбцией. Тела с развитой поверхностью способны поглощать, т. е. адсорбировать, из окружающего объема молекулы газа, жидкости. Практическое значение явления адсорбции в жизни человека весьма велико. Вспомним хотя бы противогаз или бытовые фильтры для очистки воды. В жизни чаще применяют активированный уголь и в медицине в качестве адсорбента.

Актуальность работы :

привлечение внимания к изучению химии с практической стороны и применения полученных знаний в быту, развитие интереса к получению теоретических и практических навыков по химии: работа в лаборатории, работа с Интернетом для поиска и передачи информации.

Целью данной работы является изучение и сравнение адсорбционной способности белого и черного активированного угля.

Задачи, поставленные для достижения цели :

найти примеры практического применения адсорбционной способности активированного угля в деятельности и в жизни человека.

изучить адсорбционную способность черного и белого активированного угля;

понаблюдать и проанализировать явление адсорбции, на примере активированного угля.

Изучить, как использовать разнообразные углеродосодержащие средства без вреда для здоровья и каковы возможности активированного угля.

Для исследования я ознакомился с различными источниками, технической литературой, интернет ресурсами, и выяснил, что явление адсорбции широко представлено и хорошо изученное явление. Адсорбция лежит в основе очистки, осушки, разделения газов и других процессов. На основе адсорбции производят очистку и осветление воды, которую в дальнейшем используют для питья и технических нужд. В теоретической части я использовал материалы технической и исторической литературы, а для эксперимента я воспользовался учебником для студентов Аналитическая химия, Лабораторный практикум.

Методы исследования, которые использовались в работе :

Изучение и подбор материала;

Наблюдение и анализ явлений адсорбции;

Эксперимент.

Гипотеза

Не смотря на высокую эффективность белого угля, большинство людей отдает свое предпочтение проверенному натуральному препарату - черному активированному углю. Черный активированный уголь проявляет лучшие адсорбирующие свойства по сравнению с белым активированным углем.

Заключение

Активированный уголь продемонстрировал нам свои адсорбционные способности, т.е. поглощающие свойства.

Почему же, маленькая черная таблетка способна так эффективно поглощать различные вещества?

Как я выяснил, изучая литературные источники, дело в особом строении углерода, которое представляет собой слои атомов углерода, расположенных хаотично относительно друг друга, из-за чего между слоями образуется пространство - поры. Эти поры и придают активированному углю его свойства - поры способны поглощать и удерживать в себе другие вещества. Таких пор невероятное количество. Так, площадь пор всего 1 грамма активированного угля может доходить до 2000м 2 ! Белый и черный активированный уголь находит широкое применение на основе своих свойств.

Вывод ы

Уголь - лекарственное средство, принимать нужно следуя инструкции.

Черный активированный уголь более известен и более привычен учащимся, чем белый.

Белый уголь, не смотря на своё синтетическое происхождение, является более качественным адсорбентом.

При изучении литературы углубил свои знания о применении адсорбционной способности активированного угля в жизни человека. При сравнении адсорбционной способности белого и черного угля выяснил, что черный уголь лучше поглощает запахи; обесцвечивает натуральный брусничный сироп. Белый уголь лучше обесцветил лакмус.

Не все вещества полностью адсорбируются активированным углем.

Одной из причин того, что эти вещества остались в растворе, и окраска не изменилась, может быть то, что размеры молекул этих веществ больше чем размеры пор адсорбента.

Выдвинутая гипотеза нашла своё подтверждение частично.

Мокроусовская средняя общеобразовательная школа №1.

Научно - исследовательская работа по химии:

Шанаурова Татьяна,

ученицы 10 класса

Научный руководитель: Кокорина

Татьяна Сергеевна

учитель химии МСОШ№1.

с. Мокроусово, 2010 год

Содержание
1.Введение………………………………………………………3стр.
2.Цели и задачи…………………………………………….….4стр.
3.Классификация……………………………………………….4-6стр.
4.Свойства и строение…………………………………………7-10стр.
5.Получение……………………………………………………11-14стр.
6.Наши исследования…………………………………………14-19стр.
7.Применение………………………………………………….19-26стр.
8.Пластмассы…………………………………………………….27-33стр.
9. Заключение……………………………………………………34-35стр.
10.Приложение №1………………………………………………36-
11.Приложение №2………………………………………………
12.Приложение№3…………………………………………………
13.Список литературы…………………………………………..

Введение

Мы выбрали темой исследовательской работы такие химические вещества как полимеры. Актуальность данной тематики обусловлена тем, что полимеры широко используются в науке, технике и других областях, современная жизнь без них немыслима. Ни одна отрасль промышленности не обходится без пластмасс(прил.№ 1,рис.1), химических волокон(прил.№1,рис.2), каучуков и резине на их основе. Трудно представить современный автомобиль, из которого убраны все детали , изготовленные из полимеров. Такой автомобиль представляет металлический не окрашенный каркас, в котором половина оборудования отсутствует, нет шин, аккумулятора, такой автомобиль, конечно же, не поедет. Повседневная жизнь немыслима без изделий из полимеров от полиэтиленовой пленки до посуды, а также жевательная резинка, белки молока, рыбы, мяса и такой углевод, как крахмал. А если возьмем производство лекарств, медицинского оборудования, то тут уж точно не обойтись без полимеров. Решив стать медицинскими работниками, мы поняли, что тема про полимерные материалы для нас весьма актуальна и необходима.


Термин “полимерия” был введен в науку И. Я. Берцелиусом(прил.№1,рис.3) в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.
Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).
Химия полимеров возникла только в связи с созданием А.М.Бутлеровым (прил.№1,рис.4)теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, немецкий учёный К. Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.
Цель исследования:

По различным источникам изучить свойства химических веществ полимеров и выяснить важнейшие соединения применяемые в природе, жизни, медицине и технике.

Задачи:

1. Изучить применение полимеров в медицине, различных видах техники, строительстве.

2. Провести экспериментальное исследование полимеров, широко применяемых в быту, технике и медицине, а также самостоятельно получить некоторые полимеры.

3. Сделать выводы, приготовить презентационные материалы и выступить на Дне науки в школе.

Общая характеристика и классификация.

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяющихся звеньев мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n=10...20, вещества представляют собой легкие масла. С возрастанием п увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 10 4 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах 10 3 ... 3*10 5 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Конечно, кристалличность даже в лучшем случае оказывается несовершенной.

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы.

Природные образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза(прил.№1,рис.5), крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров - материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ-неотъемлемая и существенная часть современной НТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рис. 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-0, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют термореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.



Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме пМ-->М п (рис.2), где М - мо­лекула мономера, М п - макромолекула, состоящая из мономер­ных звеньев, п- степень полимеризации.

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент - реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем- посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рис. 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах.

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки(прил.№1,рис.6), покрытия, клеи(прил.№1,рис.7).


Свойства полимеров.

Механические свойства .

Одна из основных особенностей полиме­ров состоит в том, что отдельные отрезки цепей (сегменты) могут перемещаться путем поворота вокруг связи и изменения угла (рис.3). Такое смещение, в отличие от растяжения связей при упругой деформации истинно твердых тел, не требует большой энергии и происходит при невысокой температуре. Эти виды внутреннего движения - смена конформаций, несвойственные другим твердым телам, придают полимерам сходство с жидкостя­ми. В то же время большая длина искривленных и спиралеоб­разных молекул, их ветвление и взаимная сшивка затрудняют смещение, вследствие чего полимер приобретает свойства твер­дого тела.

Для некоторых полимеров в виде концентрированных раство­ров и расплавов характерно образование под действием поля (гравитационного, электростатического, магнитного) кристалличе­ской структуры с параллельной упорядоченностью макромолекул в пределах небольшого объема-домена. Эти полимеры - так называемые жидкие кристаллы- находят широкое применение при изготовлении светоиндикаторов(прил.№1, рис.8)..

Полимерам наряду с обычной упругой деформацией свойст­вен ее оригинальный вид - высокоэластическая деформация, ко­торая становится преобладающей при повышении температуры. Переход из высокоэластического состояния в стеклообразное, ха­рактеризующееся лишь упругой деформацией, называется стеклованием. Ниже температуры стеклования Тст состояние полимера твердое, стекловидное, высокоупругое, вышеэластическое. Если температура стеклования выше температуры эксплуатации, то по­лимер используется в стеклообразном состоянии, если Тст


Для прочных (конструкционных) полимеров кривая растяже­ния подобна аналогичной кривой для металлов (рис.4). Наиболее эла­стичные полимеры-эластомеры (каучуки) имеют модуль упру­гости E=10 МПа. Как видно, даже высокомодульные полимеры уступают по жесткости металлам в десятки и сотни раз. Этот не­достаток удается в значительной мере преодолеть введением в полимер волокнистых и листовых наполнителей.

Особенность полимеров состоит также в том, что их прочност­ные свойства зависят от времени, т. е. предельная деформация устанавливается не сразу после приложения нагрузки. Такая за­медленная реакция их на механические напряжения объясняется инерционностью процесса смены конформаций, что можно пред­ставить с помощью модели (рис.4). Для полимеров, находя­щихся в высокоэластическом состоянии, закон Гука в простей­шей форме неприменим, т. е. напряжение непропорционально де­формации. Поэтому обычные методы испытаний механических свойств применительно к полимерам могут давать неоднозначные результаты. По той же причине инженерных расчетных способов конструирования деталей из полимеров пока еще не существует и преобладает эмпирический подход.

Теплофизические свойства.

Диапазон температур, при которых можно эксплуатировать полимеры без ухудшения их механических свойств, ограничен. Нагревостойкость большинства полимеров, к сожалению, очень низка - лишь 320...400 К и ограничивается началом размягче­ния (деформационная стойкость). Помимо потери прочности по­вышение температуры может вызвать и химические изменения в составе полимера, которые проявляются как потеря массы. Спо­собность полимеров сохранять свой состав при нагревании коли­чественно характеризуется относительной убылью массы при на­греве до рабочей температуры. Допустимым значением убыли массы считается 0,1 - 1%. Полимеры, стойкие при 500 К, счи­таются нагревостойкими, а при 600-700 К - высоконагревостойкими. Их разработка, расширение выпуска и применения приносят большой народнохозяйственный эффект.

Химические свойства.

Химическая стойкость полимеров опреде­ляется разными способами, но чаще всего по изменению массы при выдержке образца в соответствующей среде или реагенте. Этот критерий, однако, не является универсальным и не отража­ет природу химических изменений (деструкции). Даже в стан­дартах (ГОСТ 12020-66) предусмотрены лишь качественные ее оценки по балльной системе. Так, полимеры, изменяющие за 42 суток массу на 3 - 5%, считаются устойчивыми, на 5 - 8% - относительно устойчивыми, более 8 - 10%-нестойкими. Эти пределы зависят от вида изделия и его назначения.

Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая - к органическим. В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины. Поэтому полимеры широко используются в качестве кон­тейнеров для особо чистых реактивов и воды, защиты и гермети­зации радиокомпонентов, и особенно полупроводниковых приборов(прил.№1,рис.9) и ИС.

Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуумплотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропусто­ты, образующиеся при движении отдельных сегментов полимера. даже если его структура бездефектна.

Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:


  1. толщина слоя велика

  2. полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверх­ности металла.
Как видно, герметизирующие возможности полимеров ограни­чены, а пассивирующее их действие неуниверсально. Поэтому по­лимерная герметизация применяется в неответственных издели­ях, эксплуатирующихся в благоприятных условиях.

Для большинства полимеров характерно старение - необра­тимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кис­лот и щелочей) к изменению строения и молекулярной массы, на­зывается химической деструкцией. Наиболее распространенный ее вид - термоокислительная деструкция-происходит под дей­ствием окислителей при повышенной температуре. При деструк­ции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком.

Электрические свойства.

Как правило, полимеры являются ди­электриками, по многим параметрам лучшими в со­временной технике. Величина удельного объемного сопротивления р v зависит не только от строения, ной от содержания ионизирован­ных примесей - анионов Сl-, F-, I-, катионов Н+, Na+ и других, которые чаще всего вводятся в смолу вместе с отвердителями, модификаторами и т.д. Их концентрация может быть высокой, если реакции отверждения не были доведены до конца. Подвиж­ность этих ионов резко увеличивается с повышением температу­ры, что приводит к падению удельного сопротивления. Наличие даже весьма малых количеств влаги также способно значительно уменьшить удельное объемное сопротивление полимеров. Это происходит потому, что растворенные в воде примеси диссоциируют на ионы, кроме того, присутствие воды способствует диссо­циации молекул самого полимера или примесей, имеющихся в нем. При повышенной влажности значительно уменьшается удельное поверхностное сопротивление некоторых полимеров, что обусловлено адсорбцией влаги.

Строение макромолекул, характер их теплового движения, на­личие примесей или специальных добавок влияют на вид, концен­трацию и подвижность носителей. Так, удельное сопротивление полиэтилена повышается в 10-1000 раз после очистки от низ­комолекулярных примесей. Сорбция 0.01-0,1% воды полисти­ролом приводит к снижению удельного сопротивления в 100-1000 раз.

Диэлектрическая проницаемость более или менее резко зави­сит от двух основных внешних факторов: температуры и частоты приложенного напряжения. В неполярных полимерах она лишь слабо уменьшается с ростом температуры вследствие теплового расширения и уменьшения числа частиц в единице объема . В по­лярных полимерах диэлектрическая проницаемость сначала рас­тет, а затем падает, причем максимум обычно приходится на тем­пературу, при которой материал размягчается, т. е. лежит вне пределов рабочих режимов.

Для полимеров, как ни для одних других диэлектриков, ха­рактерны процессы накопления поверхностных зарядов - электризация . Эти заряды возникают в результате трения, контакта с другим телом, электролитических процессов на поверхности. Ме­ханизмы электризации до конца неясны. Одним из них является возникновение при контакте двух тел так называемого двойного слоя, который состоит из слоев положительных и отрицательных зарядов, расположенных друг против друга. Возможно также об­разование на поверхности контактирующих материалов тонкой пленки воды, в которой имеются условия для диссоциации моле­кул примесей. При соприкосновении или трении разрушается пленка воды с двойным слоем и часть зарядов остается на разъ­единенных поверхностях. Электролитический механизм накопле­ния зарядов при контактировании имеет место в полимерных ма­териалах, на поверхности которых могут быть низко молекуляр­ные ионогенные вещества - остатки катализаторов, пыль, влага.

Технологические свойства.

Принадлежность полимеров к термопластичному или термореактивному видам во многом опреде­ляет и способы их переработки в изделия. Соотношение их выпу­ска примерно 3:1 в пользу термопластичных материалов, но сле­дует учитывать, что термореактивные полимеры, как правило, используются в смеси с наполнителями, доля которых может до­стигать 80%. Поэтому в готовых изделиях соотношение оказыва­ется обратным: большее их количество - реактопласты(прил.№1,рис.10).. Это объ­ясняется высокой технологичностью фенолформальдегидных, по­лиэфирных, но особенно эпоксидных смол. В производстве последних получение полимера удается приостановить на началь­ной стадии, когда молекулярная масса составляет всего 500 - 1000. Такие вещества по длине цепи средние между мономе­рами и полимерами, обладающие низкой вязкостью, называются олигомерами. Именно их появление произвело в 60-е годы пере­ворот в технологии переработки полимеров в изделия, которая раньше основывалась на применении давления.

Достоинство олигомеров(прил.№1, рис.11) - низкая вязкость - дает возможность формования изделий при минимальном усилии прессования или вообще без него, под действием собственного веса. Более того, даже в смеси с наполнителями олигомеры сохраняют текучесть, что позволяет набрасывать материал на поверхность макета, не применяя давления, получать детали крупных размеров сложной формы. Низкая вязкость олигомеров позволяет также пропитывать листы ткани, а их склеивание под прессом и отверждение лежит в основе производства слоистых пластиков-оснований печатных плат. Олигомеры как ни один полимер подходят для пропитки и наклейки компонентов, особенно когда применение давления недопустимо. Для снижения вязкости в олигомер можно вводить добавки, которые способствуют повышению пластич­ности, негорючести, биологической стойкости и т, д. Мы исследовали такие олигомеры, как текстолит, стеклотекстолит. Фенолформальдегидную смолу получили сами и из неё изготовили кусочек олигомера с наполнителями.

Применяемая для этих целей смола чаще всего является сме­сью различных веществ, которую не всегда удобно готовить на месте, на предприятии-потребителе, из-за необходимости смеси­тельного и дозирующего оборудования, пожароопасности, ток­сичности и других ограничений. Поэтому широкое распространение получили компаунды(прил.№1,рис.12) - смеси олигомеров с отвердителями и дру­гими добавками, полностью готовые к употреблению и обладаю­щие при обычной температуре достаточной жизнестойкостью. Ком­паунды - жидкие или твердые легкоплавкие материалы форми­руются в изделие, после чего при повышенной температуре про­водится отверждение и образование пространственной структуры.

Если изделия на основе термореактивных смол получают ме­тодом горячего прессования, то композиция, содержащая кроме смолы еще рубленое стекловолокно(прил.№1,рис.13) или какой-либо порошкооб­разный наполнитель и другие добавки, готовят заранее, и она поступает потребителю в виде гранул или порошка, называемых прессовочным материалом (иногда - пресс-порошком). Технологические свойства как термореактивных, так и термо­пластичных полимеров характеризуются текучестью (способно­стью к вязкому течению), усадкой (уменьшением линейных раз­меров изделий по отношению к размерам формующего инстру­мента), таблетируемостыо (пресс-порошков).

Необычные свойства смесей жидких смол с мелкодисперсными наполнителями, частицы которых имеют асимметричную форму: (тальк, слюдяная мука, аэросил-коллоидный SiO 2), проявляются в том, что в спокойном состоянии они обладают высокой вязко­стью, свойственной гелям, а при механическом воздействии (пере­мешивании или встряхивании) переходят в жидкое состояние . Смеси, обладающие этим свойством, называются тиксотропными . Тиксотропные компаунды нашли широкое применение для защи­ты радиодеталей наиболее простым методом - окунания. Вяз­кость компаунда снижают с помощью вибрации (нагрев не тре­буется). При извлечении детали из жидкой смеси с одновремен­ным встряхиванием избыток ее стекает, а оставшаяся часть ее после извлечения вновь гелирует, образуя равномерное по толщи­не покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не нагреваются. Тиксотропные свойства некоторых полимерных композиций используют также при изготовлении спе­циальных красок и клеев.


Получение.

Полимеризация и поликонденсация

Синтетические полимеры получают в результате реакций полимеризации и поликонденсации.


Полимеризация - это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав:

n CH 2 =CH 2 → (-CH 2 -CH 2 -)n

Сополимеризация вставтиь из моей презентации)
Поликонденсация
- зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.

Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.


Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму. Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.

Поликонденсация , процесс получения полимеров из би- или полифункциональных соединений (мономеров ), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и др.). Типичный пример поликонденсации - синтез сложного полиэфира:

n HOAOH + n HOOCA’COOH Û [¾OAOOCA’CO¾] n + 2n H 2 O,

где А и А"- остатки соответственно гликоля (-О-СН 2 -СН 2 -О-) и дикарбоновой кислоты (-СО-С 6 Н 4 -СО-). Процесс называется гомополиконденсацией, если в нём участвует минимально возможное для данного случая число типов мономеров. Чаще всего это число равно 2, как в приведённой выше реакции, однако может быть и единицей, например:

n H 2 NACOOH Û [¾HNACO¾] n + n H 2 O.

Если помимо мономеров, необходимых для данной реакции, в поликонденсации участвует, по крайней мере, ещё один мономер, процесс называется сополиконденсацией, поликонденсации, в которую вступают только бифункциональные соединения, приводит к образованию линейных макромолекул и называется линейной. Если в поликонденсации участвуют молекулы с тремя или большим числом функциональных групп, образуются трёхмерные структуры, а процесс называется трёхмерной поликонденсации. В тех случаях, когда степень завершённости поликонденсации и средняя длина макромолекул лимитируются равновесными концентрациями реагентов и продуктов реакции, поликонденсации называется равновесной (обратимой). Если лимитирующими являются не термодинамические, а кинетические факторы, поликонденсации называется неравновесной (необратимой).

Поликонденсации часто осложняется побочными реакциями, в которые могут вступать как исходные мономеры, так и продукты их поликонденсации (олигомеры и полимеры). К таким реакциям относятся, например, взаимодействие мономера или олигомера с монофункциональным соединением (которое может присутствовать в виде примеси), внутримолекулярная циклизация, деструкция макромолекул образовавшегося полимера. Конкуренция (по скоростям) поликонденсации и побочных реакций определяет молекулярную массу, выход и молекулярно-массовое распределение поликонденсационного полимера.

Для поликонденсации характерно исчезновение мономера на ранних стадиях процесса и резкое увеличение молекулярной массы при небольшом изменении глубины процесса в области более чем 95%-ного превращения.

Необходимое условие образования высокомолекулярных полимеров при линейной поликонденсации - эквивалентность реагирующих между собой исходных функциональных групп.

Поликонденсации осуществляют тремя различными способами: в расплаве, когда смесь исходных соединений длительно нагревают при температуре, на 10-20 °С превышающей температуру плавления (размягчения) образующегося полимера; в растворе, когда мономеры находятся в одной жидкой фазе в растворённом состоянии; на границе раздела двух несмешивающихся жидкостей, в каждой из которых растворено одно из исходных соединений (межфазная поликонденсации).

Процессы поликонденсации играют важную роль в природе и технике. Поликонденсации или подобные ей реакции лежат в основе биосинтеза наиболее важных биополимеров - белков , нуклеиновых кислот , целлюлозы и др. Поликонденсации широко используется в промышленности для получения полиэфиров (полиэтилентерефталата , поликарбонатов , алкидных смол ), полиамидов , феноло-формальдегидных смол , мочевино-формальдегидных смол , некоторых кремнийорганических полимеров и др. В 1965-70 поликонденсации приобрела большое значение в связи с организацией промышленного производства ряда новых, в том числе термостойких, полимеров (полиарилатов, ароматических полиимидов , полифениленоксидов, полисульфонов и др.).
Наши исследования

1.Проба на плавление.

Сначала выясним, плавится ли исследуемая пластмасса вообще. Для этого мы нагрели исследуемые образцы на асбестовой подставке. В зависимости оттого, что будет происходить с пластмассой, мы сможем отнести ее к термо - или реактопластам. Мы взяли 5 образцов для исследования: поливинилхлорид, политетрафторэтилен, полиэтилен, полиэтилен высокого давления, текстолит.

Из исследуемых образцов получили, что 3 образца плавятся (поливинилхлорид, полиэтилен высокого давления, полиэтилен), и поэтому они относятся к термопластам. Два других образца относятся к реактопластам, так как не плавятся.(прил.№2,рис.1)

2.Температура размягчения.

Вставили пробы пластмассы - полоски длинной 5-10 см и шириной 1 см – в железный тигель, заполненный сухим песком. Тигель постепенно нагрели маленьким пламенем горелки. В песок вставили термометр. Когда полоски согнулись, по показаниям термометра заметили температуру размягчения. Определили температуру плавления полиэтилена - 117º, пластик - 93º, полистирола - 83º, поливинилхлорида - 77º.(прил.№2,рис.2)

3.Температура текучести.

Аналогично определили и температуру текучести, т.е. тот интервал температуры, в котором пластмассы приобретают текучесть. Мы наблюдали, что фенолформальдегидная смола и на её основе пластмасса разлагаются раньше, чем достигается температура текучести. Из этого можно сделать вывод, что изделия из таких пластмасс нельзя держать около печей и нагревательных приборов. Разлагаясь, они выделяют в помещение ядовитые химические вещества (фенол, формальдегид)(прил.№2,рис.3)

4.Проба на сгорание.

Взяли тигельными щипцами образец пластмассы и поместили его ненадолго в верхнюю часть высокотемпературной зоны пламени горелки. Когда вынули пластмассу из пламени, мы посмотрели, будет ли она гореть дальше. При этом обратили внимание на цвет пламени; заметили, образуется ли копоть или дым, потрескивает ли огонь, плавится ли пластмасса с образованием капель. Хорошо горят, исследованные нами полиэтилен, полипропилен, полиметаметилакрилат с характерным потрескиванием, поливинилхлорид (копоть), не горел политетрафторэтилен. Согласно исследованиям, составлена таблица (прил№2, рис.4)

5.Исследование продуктов разложения.

В маленьких пробирках нагрели измельченные пробы различных пластмасс и обратили внимание на запах, цвет и реакцию на лакмусовую бумагу образующихся продуктов разложения. Так поливинилхлорид разлагается с выделением хлороводорода(прил.№2,рис.5)

6.Химическая стойкость.

Пробы пластмасс погрузили в разбавленные и концентрированные растворы кислот и щелочей. Для изучения набухания пластмассы – полистирола, поместили в различные жидкости: - в воде, кислотах, щелочах, метилбензоле (толуоле). Пробирки оставили на 5 дней. Чтобы жидкостей меньше испарялась, заткнули пробирки пробками. В результате полистирол растворился только в толуоле, в остальных пробирках остался неизменным. Делаем вывод, что изделия из полистирола стойки к неорганическим реактивам и нестойки к органическим растворителям. Такой же опыт провели с полиэтиленом и полипропиленом. Здесь выяснили, что они стойки в органических и неорганических веществах. Поэтому широко применяются в химической промышленности.(прил.№2, рис.6).

7. Получение нитрата целлюлозы.

В смеси 1:2 азотной и серной кислоты пронитровали вату, промыли и высушили. Мы получили, таким образом, динитрат и тринитрат целлюлозы. (прил.№2,рис.7).

8. Дальнейшая переработка динитрата целлюлозы.

Чтобы ознакомиться со свойствами полученного динитрата, тигельными щипцами внесли в пламя маленькие кусочки необработанной и пронитрованной целлюлозы. Мы увидели, что динитрат целлюлозы сгорает немного быстрее, чем исходная целлюлоза.

Малую пробу динитрата нагреем в пробирке на слабом огне. Вещество разлагается с образованием коричневых паров оксида азота(IV) NO2.

Поместили в пробирку приблизительно одну треть полученного динитрата целлюлозы и добавили смесь 2 частей эфира и 1 части спирта (денатура). Пробирку неплотно закрыли пробкой. В зависимости от количества растворители мы можем получить раствор от разбавленного до очень вязкого. Этот раствор называется коллодием.

Малое количество коллодия намажем на небольшую часть руки и дадим ему испариться. Место, на которое был нанесен раствор, сильно охлаждается (отнимается теплота испарения). Остается прозрачная пленка из коллодия может служить «жидким пластырем» для заклеивания мелких ран и ссадин. Коллодий входит также в качестве пленко-образователя в состав некоторых лаков. Наряду с ним, для этой цели используется и тринитрат целлюлозы. Быстро высыхающие цветные нитролаки и бесцветный цапон-лакшироко производятся и применяются для покрытия различных изделий из дерева, металла, пластика.

Остаток динитрата целлюлозы в химическом стакане смочили спиртом . Одновременно в другом стакане растворили в спирте немного камфоры – столько, чтобы в конечном продукте ее было 20-25% по массе. К раствору камфоры будем малыми порциями добавлять смоченный спиртом динитрат целлюлозы, тщательно перемешивая. Образующуюся кашицу наносили не слишком толстым слоем на металлическую или стеклянную пластинку и оставили ее в умеренно теплом месте, чтобы спирт испарился. На поверхности образуется шероховатый слой, похожий на покрытие фотопластинки. Это целлулоид .


Можно выровнять его поверхность - стоит только наложить сверху нагретую металлическую пластинку. Поскольку температура размягчения целлулоида составляет 70-80 °С, его форму легко можно изменять в горячей воде.
Полоску полученного целлулоида тигельными щипцами внесли в пламя. Он загорается при 240 °С и горит очень интенсивно, сильно увеличивая температуру пламени и окрашивая его в желтый цвет. Кроме того, при горении появляется запах камфоры.(прил.№2, рис8)

9.Опыты с тринитратом целлюлозы

Пока мы проводили опыты с динитратом целлюлозы, тринитрат высох на воздухе. По виду эта «вата» после нитрования не изменилась, но, если ее поджечь, то она сгорит мгновенно - в отличие от исходной ваты.
При обработке смесью спирта и эфира (1: 1), этилэтанатом (этилацетатом) тринитрат целлюлозы набухает или, иными словами, желатинируется . При нанесении полученной массы на пластинку образуется пленка, которая при поджигании быстро сгорает без остатка.

10. Изготовим пергаментную бумагу.

Плоскую фарфоровую чашку заполнили наполовину раствором серной кислоты. Для его приготовления тонкой струйкой добавим 30 мл концентрированной серной кислоты к 20 мл воду. Затем раствор нужно охладить - по возможности до 5 °С.
Пластмассовым пинцетом - поместим шесть пронумерованных карандашом проб фильтровальной бумаги (полоски шириной 1 см) на 5, 10, 15, 20, 25 и 30 секунд в кислоту. После этого быстро перенесли пробы в большой стакан с водой, к которой добавлено немного нашатырного спирта. Оставили их в этой воде надолго, а затем высушили. Прежде мягкая и пористая бумага становится твердой и гладкой. Если мы измерим полоски, то обнаружим, что они уменьшились в размерах.
Испытаем прочность нашей «пергаментной бумаги » на разрыв. Для этого, отступив от края полоски на 0,5 см, согнем ее конец и наложим его на остальную часть. Так же загнем и другой конец. К укрепленным краям присоединим два зажима и закрепим полоску в штативе. В середине навесим на нее груз .
Необработанная бумага (полоска шириной 1 см из круглого фильтра) порвется скорее всего при нагрузке 450 г, тогда как проба, обработанная серной кислотой, выдержит нагрузку 1750 г. Для опытов взяли не слишком плотную бумагу. В промышленности для той же цели используют бумагу толщиной 0,1-0,2 мм.
С помощью направляющих роликов из стекла и резины ее в течение 5-20 секунд протягивают через ванну с 73%-ной серной кислотой. Благодаря специальному приспособлению, которое удерживает бумагу в растянутом состоянии, при этом предотвращается ее чрезмерная усадка.
Фибра-материал для изготовления чемоданов получается в результате обработки бумаги раствором хлорида цинка. "Пергаментированные" полосы бумаги наматываются на барабан, где слои ее спрессовываются. Полученный рулон разрезают на пластины, еще раз обрабатывают их водой и затем прессуют.
Для приготовления раствора хлорида цинка чуть-чуть разбавили концентрированную соляную кислоту. Будем добавлять к ней цинк до тех пор, пока кислота не перестанет с ним реагировать.

В раствор, который мы отделили декантацией от избыточного цинка, опустим на 5-10 минут фильтровальную бумагу. После этого тщательно промыли ее водой.


При этих процессах, которые называются пергаментированием , бумага очень сильно набухает. Длинные молекулы целлюлозы в результате частичного расщепления превращаются в так называемую гидроцеллюлозу , а при более продолжительной обработке - в продукт с еще более короткими цепями - амилоид .
В результате первоначально рыхлая волокнистая структура бумаги в значительной степени изменяется, и высушивание сопровождается усадкой.
При действии этановой (уксусной) кислоты и ее ангидрида целлюлоза превращается в растворимую форму - этанат (ацетат ) целлюлозы (Применяется также другое наименование - ацетилцеллюлоза ).
Последний используют для получения пластмасс, а из его растворов в органических растворителях изготовляют лаки, клеи, фото- и кинопленку, волокна. Целлон - материал, из которого делают негорючую пленку, - состоит из этаната целлюлозы и камфоры(прил.№2,рис.9).

11.Фенолоформальдегидные лаки и клеи

В маленьком химическом стакане осторожно нагрели на водяной бане 10 г фенола с 15 мл формалина и 0,5 мл 30%-ного раствора гидроксида натрия (едкого натра ). После длительного нагревания масса стала вязкой. Когда взятая стеклянной палочкой проба при охлаждении начала затвердевать, прекратили нагревание и часть полученной в стакане резольной смолы перенесли в пробирку, заполненную на одну треть денатуратом или метанолом.
При этом смола растворяется. Полученным раствором мы можем лакировать мелкие металлические предметы.
Чтобы лак не был липким, его понадобится еще отвердить. Для этого лакированный предмет осторожно нагревают не выше 160 °С - током воздуха, нагретого пламенем горелки, или в сушильном шкафу. Вполне подойдет и духовка кухонной плиты.
После обжига лак надежно пристает к металлу, он стоек по отношению к кислотам и щелочам, тверд, прочен на изгиб и к удару. Такие лаки во многих отраслях промышленности заменили старые природные лаки. Для лакировки деревянных изделий применяют самоотверждающиеся лаки.

Резольными фенолоформальдегидными смолами можно также склеивать дерево с деревом или с металлом. Сцепление получается очень прочным, и этот способ склеивания в настоящее время находит все более широкое применение, особенно в авиационной промышленности.


Изготовили снова вязкотекучую резольную смолу путем нагревания смеси фенола, формалина и раствора едкого натра. Этой смолой склеили две тонкие деревянные дощечки. Для этого одну из них намажем полученной смолой, а на другую нанесем концентрированную соляную кислоту.
Плотно прижмем дощечки друг к другу, подержим несколько минут в токе горячего воздуха или в сушильном шкафу и затем дадим остыть. Соляная кислота служит в этом опыте отвердителем и превращает смолу в резит. Дощечки склеиваются очень прочно.
В промышленности склеивание смолами на основе фенола применяется при изготовлении клееной фанеры и древесноволокнистых пластиков. Кроме того, такие смолы успешно используются для изготовления щеток и кистей, а в электротехнике ими отлично склеивают стекло с металлом в лампах накаливания, люминесцентных лампах и радиолампах(прил.№2, рис.10).

12.Изготовление пенопласта.

В большой пробирке растворили 3 г мочевины в как можно более концентрированном (40%-ном) формалине. В другой пробирке смешаем 0,5 мл шампуня с 2 каплями 20%-ной соляной кислоты, добавим раствор из первой пробирки и взболтаем полученную смесь до образования обильной пены.
Затем нагрели пробирку на слабом пламени. При этом пена затвердела. Подождем 10 минут, снова слегка нагреем пробирку, дадим ей остыть и затем разобьем.
Мы получим твердый белый пенопласт, правда с более крупными порами, чем у того, который производит промышленность(прил.№2,рис.11).

13.Изготовление мочевиноформальдегидной смолы.

Изготовление мочевиноформальдегидной смолы, в основном, не отличается от только что описанного опыта. Заполнили пробирку на одну треть насыщенным раствором мочевины в формалине, добавили 2 капли 20%-ной соляной кислоты и нагрели смесь на малом огне до кипения. Далее она кипит самопроизвольно, в конечном счете мутнеет и быстро загустевает, приобретая консистенцию резины.
Выдержали пробирку не менее 20 минут в кипящей водяной бане . При этом мочевиноформальдегидная смола отверждается. Разбив пробирку, мы извлечем из нее очень твердую массу - от прозрачной до почти белой.
Мочевиноформальдегидные пластики служат для изготовления товаров бытового назначения - посуды, рукояток, пуговиц, футляров и т. п. Если эти смолы получать в нейтральной среде, то конденсация останавливается на стадии резола. Полученная при этом сиропообразная масса растворима в воде. Этот раствор известен как синтетический карбамидный клей (В нашей стране клай марки К-17 и др.)(прил.№2, рис12).

14.Приготовим карбамидный клей

В круглодонной колбе, в которую вставлен обратный холодильник, на малом огне нагрели до кипения смесь 15 г мочевины, 25 г 30%-ного формалина и 3 капель концентрированного раствора едкого натра. Через 15 минут нагревание прекратили и посмотрели, стала ли масса вязкой. Это состояние было достигнуто, и мы разбавили ее очень малым количеством воды. Полученной массой густо намажем одну сторону деревянной дощечки, а другую дощечку пропитаем отвердителем.
Проведем три опыта: испытаем в качестве отвердителя соляную и метановую (муравьиную) кислоты, а также концентрированный раствор хлорида аммония. При использовании хлорида аммония клей не следует наносить слишком густым слоем. Хлорид аммония при нагревании разлагается, образуя хлористый водород и аммиак. Это приводит к появлению трещин и расклеивайте.
Образцы плотно сжали друг с другом. Склеивание длится 15-20 часов. Процесс можно ускорить - нагревать образцы не менее 30 минут при 80-100 °С. В лаборатории для этого лучше всего использовать сушильный шкаф. Карбамидный клей хорошо подходит для склеивания слоистой древесины, фанеры, фибры, изготовления моделей и т. п. Важнейшим свойством полученных клеевых соединений является их стойкость по отношению к холодной и горячей воде(прил.№2, рис.13).
Применение полимеров.

Полимеры в сельском хозяйстве

Сегодня можно говорить, по меньшей мере, о четырех основных направлениях использования полимерных ма­териалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повы­шается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гид­роизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укры­тие пленкой сенажа, силоса, грубых кормов обеспечива­ет их лучшую сохранность даже в неблагоприятных по­годных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйст­ве - строительство и эксплуатация пленочных теплиц(прил.№1, рис.14). В настоящее время стало технически возможным выпу­скать полотнища пленки шириной до 16 м, а это позво­ляет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизирован­но; более того, эти теплицы позволяют выращивать про­дукцию круглогодично. В холодное время теплицы обо­греваются опять-таки с помощью полимерных труб, за­ложенных в почву на глубину 60-70 см.

С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, не пластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация . Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, например, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб(прил.№1,рис.15), особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.

Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png