Провести полное исследование и построить график функции

y(x)=x2+81−x.y(x)=x2+81−x.

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя.

1−x=0,⇒x=1.1−x=0,⇒x=1.

Исключаем единственную точку x=1x=1 из области определения функции и получаем:

D(y)=(−∞;1)∪(1;+∞).D(y)=(−∞;1)∪(1;+∞).

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка x=1x=1 является разрывом второго рода, прямая x=1x=1 - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат OyOy, для чего приравниваем x=0x=0:

Таким образом, точка пересечения с осью OyOy имеет координаты (0;8)(0;8).

Найдем точки пересечения с осью абсцисс OxOx, для чего положим y=0y=0:

Уравнение не имеет корней, поэтому точек пересечения с осью OxOx нет.

Заметим, что x2+8>0x2+8>0 для любых xx. Поэтому при x∈(−∞;1)x∈(−∞;1) функция y>0y>0(принимает положительные значения, график находится выше оси абсцисс), при x∈(1;+∞)x∈(1;+∞) функция y<0y<0 (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0y′=0):

Получили три критические точки: x=−2,x=1,x=4x=−2,x=1,x=4. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При x∈(−∞;−2),(4;+∞)x∈(−∞;−2),(4;+∞) производная y′<0y′<0, поэтому функция убывает на данных промежутках.

При x∈(−2;1),(1;4)x∈(−2;1),(1;4) производная y′>0y′>0, функция возрастает на данных промежутках.

При этом x=−2x=−2 - точка локального минимума (функция убывает, а потом возрастает), x=4x=4 - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума (−2;4)(−2;4), точка максимума (4;−8)(4;−8).

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:

Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда x∈(−∞;1)x∈(−∞;1) выполняется y′′>0y″>0, то есть функция вогнутая, когда x∈(1;+∞)x∈(1;+∞) выполняется y′′<0y″<0, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида y=kx+by=kx+b. Вычисляем значения k,bk,b по известным формулам:


Получили, у что функции есть одна наклонная асимптота y=−x−1y=−x−1.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

y(−5)=5.5;y(2)=−12;y(7)=−9.5.y(−5)=5.5;y(2)=−12;y(7)=−9.5.

10) По полученным данным построим график, дополним его асимптотами x=1x=1(синий), y=−x−1y=−x−1 (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Задание 4: Геометрические, Экономические задачи(не имею понятия какие, тут примерная подборка задач с решением и формулами)

Пример 3.23. a

Решение. x и y y
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24.

Решение.
R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤ x ≤ a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.


Похожая информация.



Стоит задача: провести полное исследование функции и построить ее график .

Каждый студент прошел через подобные задачи.

Дальнейшее изложение предполагает хорошее знание . Рекомендуем обращаться к этому разделу при возникновении вопросов.


Алгоритм исследования функции состоит из следующих шагов.

    Нахождение области определения функции.

    Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.

    В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

    (В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом:
    для корня четной степени, например, - область определения находится из неравенства ;
    для логарифма - область определения находится из неравенства ).

    Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.

    На границах области определения функция имеет вертикальные асимптоты , если в этих граничных точках бесконечны.

    В нашем примере граничными точками области определения являются .

    Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

    Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.

    Исследование функции на четность или нечетность.

    Функция является четной , если . Четность функции указывает на симметрию графика относительно оси ординат.

    Функция является нечетной , если . Нечетность функции указывает на симметрию графика относительно начала координат.

    Если же ни одно из равенств не выполняется, то перед нами функция общего вида.

    В нашем примере выполняется равенство , следовательно, наша функция четная. Будем учитывать это при построении графика - он будет симметричен относительно оси oy .

    Нахождение промежутков возрастания и убывания функции, точек экстремума.

    Промежутки возрастания и убывания являются решениями неравенств и соответственно.

    Точки, в которых производная обращается в ноль, называют стационарными .

    Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

    ЗАМЕЧАНИЕ (включать ли критические точки в промежутки возрастания и убывания).

    Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.

    Таким образом, чтобы определить промежутки возрастания и убывания функции

    • во-первых, находим производную;
    • во-вторых, находим критические точки;
    • в-третьих, разбиваем область определения критическими точками на интервалы;
    • в-четвертых, определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» - промежутку убывания.

    Поехали!

    Находим производную на области определения (при возникновении сложностей, смотрите раздел ).

    Находим критические точки, для этого:

    Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.

    Делаем вывод:

    Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.

    Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.

    В нашем примере точкой экстремума является точка х=0 . Значение функции в этой точке равно . Так как производная меняет знак с плюса на минус при прохождении через точку х=0 , то (0; 0) является точкой локального максимума. (Если бы производная меняла знак с минуса на плюс, то мы имели бы точку локального минимума).

    Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.

    Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.

    Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.

    Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.

    Таким образом, чтобы определить промежутки вогнутости и выпуклости функции :

    • во-первых, находим вторую производную;
    • во-вторых, находим нули числителя и знаменателя второй производной;
    • в-третьих, разбиваем область определения полученными точками на интервалы;
    • в-четвертых, определяем знак второй производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку вогнутости, знак «минус» - промежутку выпуклости.

    Поехали!

    Находим вторую производную на области определения.

    В нашем примере нулей числителя нет, нули знаменателя .

    Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.

    Делаем вывод:

    Точка называется точкой перегиба , если в данной точке существует касательная к графику функции и вторая производная функции меняет знак при прохождении через .

    Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.

    В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.

    Нахождение горизонтальных и наклонных асимптот.

    Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.

    Наклонные асимптоты ищутся в виде прямых , где и .

    Если k=0 и b не равно бесконечности, то наклонная асимптота станет горизонтальной .

    Кто такие вообще эти асимптоты?

    Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.

    Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.

    Для нашего примера

    - горизонтальная асимптота.

    На этом с исследование функции завершается, переходим к построению графика.

    Вычисляем значения функции в промежуточных точках.

    Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).

    Для нашего примера найдем значения функции в точках х=-2 , х=-1 , х=-3/4 , х=-1/4 . В силу четности функции, эти значения будут совпадать со значениями в точках х=2 , х=1 , х=3/4 , х=1/4.

    Построение графика.

    Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).

    Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.

    Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.

Графики некоторых элементарных функций можно строить с использованием графиков основных элементарных функций.

Сегодня мы предлагаем вместе с нами исследовать и построить график функции. После внимательного изучения данной статьи вам не придется долго потеть над выполнением подобного рода задания. Исследовать и построить график функции нелегко, работа объемная, требующая максимального внимания и точности вычислений. Для облегчения восприятия материала мы будем поэтапно изучать одну и ту же функцию, объясним все наши действия и вычисления. Добро пожаловать в удивительный и увлекательный мир математики! Поехали!

Область определения

Для того чтобы исследовать и построить график функции, необходимо знать несколько определений. Функция является одним из основных (базовых) понятий в математике. Она отражает зависимость между несколькими переменными (двумя, тремя и более) при изменениях. Так же функция показывает зависимость множеств.

Представьте, что у нас есть две переменные, которые имеют определенный диапазон изменения. Так вот, у - это функция от х, при условии, что каждому значению второй переменной соответствует одно значение второй. При этом переменная у - зависима, ее и называют функцией. Принято говорить, что переменные х и у находятся в Для большей наглядности данной зависимости строят график функции. Что такое график функции? Это множество точек на координатной плоскости, где каждому значению х соответствует одно значение у. Графики могут быть разные - прямая линия, гипербола, парабола, синусоида и так далее.

График функции невозможно построить без исследования. Сегодня мы научимся проводить исследование и построим график функции. Очень важно в ходе исследования на наносить пометки. Так справиться с задачей будет намного проще. Наиболее удобный план исследования:

  1. Область определения.
  2. Непрерывность.
  3. Четность или нечетность.
  4. Периодичность.
  5. Асимптоты.
  6. Нули.
  7. Знакопостоянство.
  8. Возрастание и убывание.
  9. Экстремумы.
  10. Выпуклость и вогнутость.

Начнем с первого пункта. Найдем область определения, то есть на каких промежутках существует наша функция: у=1/3(х^3-14х^2+49х-36). В нашем случае, функция существует при любых значениях х, то есть область определения равна R. Записать это можно следующим образом хÎR.

Непрерывность

Сейчас мы с вами будем исследовать функцию на разрыв. В математике термин «непрерывность» появился в результате изучения законов движения. Что является бесконечным? Пространство, время, некоторые зависимости (примером может служить зависимость переменных S и t в задачах на движение), температура нагреваемого объекта (воды, сковороды, термометра и так далее), непрерывная линия (то есть та, которую можно нарисовать, не отрывая от листа карандаш).

Непрерывным считается график, который не разрывается в некоторой точке. Одним из самых наглядных примеров такого графика является синусоида, которую вы можете увидеть на картинке в данном разделе. Функция непрерывна в некоторой точке х0, если соблюден ряд условий:

  • в данной точке определена функция;
  • правый и левый предел в точке равны;
  • предел равен значению функции в точке х0.

При несоблюдении хотя бы одного условия говорят, что функция терпит разрыв. А точки, в которых разрывается функция, принято называть точками разрыва. Примером функции, которая при графическом отображении будет «разрываться», может служить: у=(х+4)/(х-3). При этом у не существует в точке х=3 (так как на нуль делить нельзя).

В функции, которую исследуем мы (у=1/3(х^3-14х^2+49х-36)) оказалось все просто, так как график будет являться непрерывным.

Четность, нечетность

Теперь исследуйте функцию на четность. Для начала немного теории. Четной называют ту функцию, которая удовлетворяет условию f(-x)=f(x) при любом значении переменной х (из области значений). Примерами могут служить:

  • модуль х (график похож на галку, биссектриса первой и второй четверти графика);
  • х в квадрате (парабола);
  • косинус х (косинусоида).

Обратите внимание на то, что все эти графики симметричны, если рассматривать это относительно оси ординат (то есть у).

А что же тогда называют нечетной функцией? Таковыми являются те функции, которые удовлетворяют условию: f(-х)=-f(х) при любом значении переменной х. Примеры:

  • гипербола;
  • кубическая парабола;
  • синусоида;
  • тангенсоида и так далее.

Обратите внимание на то, что данные функции имеют симметрию относительно точки (0:0), то есть начала координат. Исходя из того, что было сказано в данном разделе статьи, четная и нечетная функция должна обладать свойством: х принадлежит множеству определения и -х тоже.

Исследуем функцию на четность. Мы можем заметить, что она не подходит ни под одно из описаний. Следовательно, наша функция не является ни четной, ни нечетной.

Асимптоты

Начнем с определения. Асимптота - это кривая, которая максимально приближена к графику, то есть расстояние от некоторой точки стремится к нулю. Всего выделяют три вида асимптот:

  • вертикальные, то есть параллельные оси у;
  • горизонтальные, то есть параллельные оси х;
  • наклонные.

Что касается первого вида, то данные прямые стоит искать в некоторых точках:

  • разрыв;
  • концы области определения.

В нашем случае функция непрерывна, а область определения равна R. Следовательно, вертикальные асимптоты отсутствуют.

Горизонтальная асимптота есть у графика функции, который отвечает следующему требованию: если х стремится к бесконечности или минус бесконечности, а предел равен некоторому числу (например, а). В данном случае у=а - это и есть горизонтальная асимптота. В исследуемой нами функции горизонтальных асимптот нет.

Наклонная асимптота существует только в том случае, если соблюдены два условия:

  • lim (f(x))/x=k;
  • lim f(x)-kx=b.

Тогда ее можно найти по формуле: у=kx+b. Опять же, в нашем случае наклонных асимптот нет.

Нули функции

Следующим этапом нам необходимо исследовать график функции на нули. Очень важно отметить и то, что задание, связанное с нахождением нулей функции, встречается не только при исследовании и построении графика функции, но и как самостоятельное задание, и как способ решения неравенств. От вас могут потребовать найти нули функции на графике или использовать математическую запись.

Нахождение данных значений поможет вам более точно составить график функции. Если говорить простым языком, то нуль функции - это значение переменной х, при которой у=0. Если вы ищите нули функции на графике, то стоит обратить внимание на точки, в которых происходит пересечение графика с осью абсцисс.

Чтобы найти нули функции, необходимо решить следующее уравнение: у=1/3(х^3-14х^2+49х-36)=0. После проведения необходимых вычислений, мы получаем следующий ответ:

Знакопостоянство

Следующий этап исследования и построения функции (графика) - это нахождение промежутков знакопостоянства. Это значит, что мы должны определить, на каких промежутках функция принимает положительное значение, а на каких - отрицательное. Это нам помогут сделать найденные в прошлом разделе нули функции. Итак, нам нужно построить прямую (отдельно от графика) и в правильном порядке распределить по ней нули функции от меньшего к большему. Теперь нужно определить, какой из полученных промежутков имеет знак «+», а какой «-».

В нашем случае, функция принимает положительное значение на промежутках:

  • от 1 до 4;
  • от 9 до бесконечности.

Отрицательное значение:

  • от минус бесконечности до 1;
  • от 4 до 9.

Это определить достаточно просто. Подставьте любое число из промежутка в функцию и посмотрите с каким знаком получился ответ (минус или плюс).

Возрастание и убывание функции

Для того чтобы исследовать и построить функцию, нам необходимо узнать, где график будет возрастать (идти вверх по Оу), а где будет падать (ползти вниз по оси ординат).

Функция возрастает только в том случае, если большему значению переменной х соответствует большее значение у. То есть х2 больше х1, а f(х2) больше f(x1). И совершенно обратное явление мы наблюдаем у убывающей функции (чем больше х, тем меньше у). Для определения промежутков возрастания и убывания необходимо найти следующее:

  • область определения (у нас уже есть);
  • производную (в нашем случае: 1/3(3х^2-28х+49);
  • решить уравнение 1/3(3х^2-28х+49)=0.

После вычислений мы получаем результат:

Получаем: функция возрастает на промежутках от минуса бесконечности до 7/3 и от 7 до бесконечности, а убывает на промежутке от 7/3 до 7.

Экстремумы

Исследуемая функция y=1/3(х^3-14х^2+49х-36) является непрерывной и существует при любых значениях переменной х. Точка экстремума показывает максимум и минимум данной функции. В нашем случае таковых не имеется, что значительно упрощает задачу построения. В противном случае так же находятся при помощи производной функции. После нахождения не забывайте отмечать их на графике.

Выпуклость и вогнутость

Продолжаем далее исследовать функцию y(x). Сейчас нам нужно проверить ее на выпуклость и вогнутость. Определения этих понятий достаточно тяжело воспринять, лучше все проанализировать на примерах. Для теста: функция выпуклая, если является неубывающей функции. Согласитесь, это непонятно!

Нам нужно найти производную от функции второго порядка. Мы получаем: у=1/3(6х-28). Теперь приравняем правую часть к нулю и решим уравнение. Ответ: х=14/3. Мы нашли точку перегиба, то есть место, где график меняет выпуклость на вогнутость или наоборот. На промежутке от минус бесконечности до 14/3 функция выпукла, а от 14/3 до плюс бесконечности - вогнута. Очень важно отметить и то, что точка перегиба на графике должна быть плавной и мягкой, никаких острых углов присутствовать не должно.

Определение дополнительных точек

Наша задача - исследовать и построить график функции. Мы закончили исследование, построить график функции теперь не составит труда. Для более точного и детального воспроизведения кривой или прямой на координатной плоскости можно найти несколько вспомогательных точек. Их вычислить довольно просто. Например, мы возьмем х=3, решаем полученное уравнение и находим у=4. Или х=5, а у=-5 и так далее. Дополнительных точек вы можете брать столько, сколько вам необходимо для построения. Минимум их находят 3-5.

Построение графика

Нам необходимо было исследовать функцию (x^3-14х^2+49х-36)*1/3=у. Все необходимые пометки в ходе вычислений были нанесены на координатной плоскости. Все что осталось сделать - построить график, то есть соединить все точки между собой. Соединять точки стоит плавно и аккуратно, это дело мастерства - немного практики и ваш график будет идеальным.

К сожалению, не все студенты и школьники знают и любят алгебру, но готовить домашние задания, решать контрольные и сдавать экзамены приходится каждому. Особенно трудно многим даются задачи на построение графиков функций: если где-то что-то не понял, не доучил, упустил — ошибки неизбежны. Но кому же хочется получать плохие оценки?

Не желаете пополнить когорту хвостистов и двоечников? Для этого у вас есть 2 пути: засесть за учебники и восполнить пробелы знаний либо воспользоваться виртуальным помощником — сервисом автоматического построения графиков функций по заданным условиям. С решением или без. Сегодня мы познакомим вас с несколькими из них.

Лучшее, что есть в Desmos.com, это гибко настраиваемый интерфейс, интерактивность, возможность разносить результаты по таблицам и бесплатно хранить свои работы в базе ресурса без ограничений по времени. А недостаток — в том, что сервис не полностью переведен на русский язык.

Grafikus.ru

Grafikus.ru — еще один достойный внимания русскоязычный калькулятор для построения графиков. Причем он строит их не только в двухмерном, но и в трехмерном пространстве.

Вот неполный перечень заданий, с которыми этот сервис успешно справляется:

  • Черчение 2D-графиков простых функций: прямых, парабол, гипербол, тригонометрических, логарифмических и т. д.
  • Черчение 2D-графиков параметрических функций: окружностей, спиралей, фигур Лиссажу и прочих.
  • Черчение 2D-графиков в полярных координатах.
  • Построение 3D-поверхностей простых функций.
  • Построение 3D-поверхностей параметрических функций.

Готовый результат открывается в отдельном окне. Пользователю доступны опции скачивания, печати и копирования ссылки на него. Для последнего придется авторизоваться на сервисе через кнопки соцсетей.

Координатная плоскость Grafikus.ru поддерживает изменение границ осей, подписей к ним, шага сетки, а также — ширины и высоты самой плоскости и размера шрифта.

Самая сильная сторона Grafikus.ru — возможность построения 3D-графиков. В остальном он работает не хуже и не лучше, чем ресурсы-аналоги.

Onlinecharts.ru

Онлайн-помощник Onlinecharts.ru строит не графики, а диаграммы практически всех существующих видов. В том числе:

  • Линейные.
  • Столбчатые.
  • Круговые.
  • С областями.
  • Радиальные.
  • XY-графики.
  • Пузырьковые.
  • Точечные.
  • Полярные бульки.
  • Пирамиды.
  • Спидометры.
  • Столбчато-линейные.

Пользоваться ресурсом очень просто. Внешний вид диаграммы (цвет фона, сетки, линий, указателей, форма углов, шрифты, прозрачность, спецэффекты и т. д.) полностью определяется пользователем. Данные для построения можно ввести как вручную, так и импортировать из таблицы CSV-файла, хранимого на компьютере. Готовый результат доступен для скачивания на ПК в виде картинки, PDF-, CSV- или SVG-файлов, а также для сохранения онлайн на фотохостинге ImageShack.Us или в личном кабинете Onlinecharts.ru. Первый вариант могут использовать все, второй — только зарегистрированные.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png